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Abstract

A general volume rendering technique is described that efficiently produces images of good quality

from data defined over multiple, non-convex, irregular grids, which may also intersect each other. Such

grids present problems for most current volume rendering techniques, which implicitly assume that cells

do not intersect except on their boundaries. Also, the wide range of cell sizes (by a factor of 10,000 or

more) presents difficulties for many techniques. This technique also permits inclusion of polygon mesh

surfaces within the volume. Rendering is done in software, which eliminates the need for special graphics

hardware, and also eliminates any artifacts associated with graphics hardware.

The volume is organized into a spatial hierarchy, making it possible to access data from a restricted

region efficiently. The hierarchy has greater depth in regions of greater detail, as determined by the

number of irregular cells in the region. This also makes it possible to render useful "preview" images

very quickly by displaying each region associated with a tree node as one cell, a facility that is important

for navigating in very large data sets.

The Mgorithmic techniques include use of a k-d tree, with prefix-order partitioning of triangles, to

reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for

a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical

accuracy, and a scanline algorithm with depth sorting and a new clipping technique.

1 Introduction

Direct vohlme rendering is an attractive technique because it can convey a great deal of information in a

single image by mapping the scalar data values in a sample volume to color and opacity. However, a great

amount of computation is required to calculate the information presented, particularly when the samples are

on irregular grids, which may even be intersecting multiple grids within the same 3D space. The problem is

further exacerbated when the data sets are very large.

This paper presents a direct volume rendering technique developed for wide range of grids, including

eurvilinear grids with hexahedral cells, tetrahedral irregular grids, rectilinear grids, and intersecting multiple

grids. The pertinent contributions are as follows:



1. A software scan conversion technique for direct volume rendering: The faces of volume grid cells are

treated as independent polygons, much as in a scan conversion renderer for polygon rendering. However,

to accommodate semi-transparency, they are fully sorted in screen depth at each pixel, and their values at

each pixel are used in an integration in depth that simulates the accumulation of color and opacity between

the faces. This technique is quite generalbecause polygons are permitted to intersect. Thus, additional

geometric elements, represented by polygons, can be included among the polygons from the volume, without

any change to the basic technique. Because the process is entirely in software, it is portable, requiring no

special graphics hardware.

2. Multi-resolution hierarchy: Polygons are associated with a k-d tree over the bounding box of the

volume, and an approximation of the data values within the subregion is stored in each node of the tree.

The use of a hierarchy has two advantages. First, it allows one to ignore large regions of the data that

are invisible in a particular image. Second, it allows one to render either the detailed data or a faster,

error-controlled approximation of it.

3. Parallelization: The method has been parallelized for shared-memory MIMD workstations. We

observed a speed-up of 3.25 on four processors. However, as discussed in Section 3.2, the current

implementation is not expected to scale up well beyond 16 processors.

2 Background and Related Work

Direct volume rendering originally was used for rectilinear grids, which permit many kinds of optimization.

The two early approaches were ray-casting and cell projection [7]. Splatting (weighted voxel projection) soon

followed [30]. Newer methods for regular grids include hardware-assisted approaches [16, 33], Fourier volume

render!ng [17, 21], further shearing approaches [15, 24], and 3D hardware textures [3, 6, 12, 36].

However, many applications create volume data sets that are not rectilinear, such as computational fluid

dynamics (CFD) and finite element analysis (FEM). Such data is often found on curvilinear grids (where a

computational regular grid is warped to fit around objects of interest), and unstructured grids (where data

points are connected to form tetrahedral or other polyhedral cells). Multiple overlapping and intersecting

grids may be used to sample space around very complex shapes, such as the space shuttle [2]. Our research

concentrates on rendering such irregular data.

A number of complexities are introduced when volume rendering irregular grids, which are not present

with rectilinear grids. A visibility ordering (front-to-back) is not implicit. Many operations are much more

expensive, such as intersecting rays with cells, projecting irregular cells, and interpolating across faces or

through cells. Intersecting grids are a particular problem for most methods.

Ray-casting irregular grids tends to be quite slow, though parallelization can help significantly [8, 4, 26,

14, 19]. Faster projection methods have been developed in software [9, 10, 18, 23, 35] and in hardware [25,

33]. These hardware approaches trade some image quality for speed. Irregular grids can be resampled for

speed [22, 31], also with loss in image quality.

Hierarchies have been shown to be helpful in accelerating direct volume rendering on regular grids [16,

34] and tetrahedrai grids [5].
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3 The Algorithm

This sectionfirst describesthe basicscanlinealgorithmfor volumerenderinga region;thenhowit is
paralMized;andfinallyhowit isusedwithamulti-resolutionhierarchy.

3.1 The ScanlineAlgorithm
Thescanlinetechniquehasthemeritsof bothgeneralityandcoherence.It is basedonWatkin'sscanline
algorithm[29],withseveralmodifications.Sampledatavaluesformthecornersof polyhedralcellswhose
facesare(possiblynon-planar)polygons.Thesefacesareprocessedindependentlyin thealgorithm.In our
implementation,wesubdividefaceswherenecessaryto formtriangles;thealgorithmcouldalsobewritten
to accommodateanypolygon.Furtherdetailsonthisaspectof thealgorithmcanbefoundin a technical
report[32].

Whilea greatdealofworkhasbeendone(mostlyin the1980's)ontheproblemof scanlinerendering
of polygonaldatasets,wewishto emphasizethat usingscanconversionfor directvolumerenderingis a
differentproblem.Mostimportantly,in polygonscanconversionit is thesurfaces, which are usually opaque,

that have color properties. In direct volume rendering, it is the material between the cell surfaces that has

color properties, and this material is often semi-transparent.

3.1.1 Polygon Creation

The volume is decomposed into polygons, each given a sequential identifier (Id). Polygons consist of a list

of pointers into a vertex list. Whenever a new geometrical transformation is applied, vertices are converted

from world space to screen space by passing each vertex through the geometry and projection matrices. (See

Section 3.5 for a description of the projection used, which is designed to preserve screen-depth distances near

the center of the volume.) The polygon Id can be used as an index to find the locations of the vertices and

their scalar data values. Because multiple grids are allowed, as well as surface polygon meshes, a grid Id

specifies with which grid or surface this polygon is associated.

Any group of polygons to be rendered includes the faces of a restrict box, which by default is the bounding

box around the volume, but which can be adjusted by the user. In some cases, it is established during traversal

of the hierarchy (see Section 3.3). The six faces of the restrict box are treated much like other polygons

during processing, but take on a special meaning during pixel processing (see Section 3.1.4).

3.1.2 Y-Bucket Processing

Each scanline has associated with it a y-bucket list consisting of the polygon Ids for those polygons that

first appear on that scanline. (We process scanlines bottom-to-top.) Polygons are excluded from y-buckets

if they are outside the restrict box, or lie completely between adjacent scanlines, or lie completely between

vertical lines through a pair of adjacent pixel centers.

After computing y-bucket lists, each scanline must be processed and drawn into the software frame

buffer. An active list containing the polygon Id's of those polygons contributing to a scanline is maintained.

Before processing the current scanline, the previous scanline must be updated by adding in new polygons

from the current scanline and removing any that are no longer active. The active list is implemented as

an array of structures, each containing various polygon information, and the scanline at which this polygon



canbedeletedfrom theactivelist. Forpolygonson the boundaryof a grid, theverticesarestoredin
counter-clockwiseorderwhenviewedfromoutsidethegrid.

3.1.3 X-Bucket Processing

When processing a particular scanline, pertinent information for each active polygon is transferred to an

z-bucket data structure, which is associated with the leftmost pixel in which the polygon will appear. A

linked list of these structures is associated with each x-bucket in front-to-back visibility order.

As the scanline is processed, another active list is maintained and updated for each pixel. The active

list contains the data value and the screen depth for each triangle that contributes to that pixel. As with

the vertical active list (Section 3.1.2), polygons that become inactive at the current pixel are deleted, and

polygons in the current x-bucket are inserted, except that now the list is maintained in sorted order. The

surviving polygons of the previous pixel's active list must be updated with newly interpolated values of field

data and screen depth, corresponding to one pixel of horizontal movement. New screen depths may require

rearrangement of polygons among survivors, and new polygons must be merged in, maintaining screen-depth

order.

3.1.4 Pixel Processing

The active list for a particular pixel is traversed to accumulate the color and opacity for that pixel. Polygons

are processed front to back. In our implementation, data values (interpolated to that pixel) for each pair

of adjacent polygons are averaged, and the average is used as the parameter of a transfer function that

provides a color and opacity value. Taking into account the line-of-sight distance between the two polygons,

a color and opacity contribution for that region is calculated. This contribution is composited into a software

(floating point) frame buffer. The equations for this standard process are found elsewhere, e. g. [33].

There is a slight further complexity. Because six restricting polygons delimit the region to be rendered,

there are two "restriction" polygons in any pixel list that should affect the image - the first indicates

contributions should begin to be accumulated, and the second indicates contributions should stop being

accumulated. (This removes the need to explicitly clip any polygon.) If the first normal (non-restriction)

polygon in the pixel's active list is not an exterior face of a grid, this signifies that rendering begins inside

a grid, and there is "material" between the restriction polygon and the first normal polygon. The color

and opacity of this material must be calculated by extrapolation, since the restriction polygon has no such

properties. The same applies if the last normal polygon is not an exterior face.

Section 3.3 describes how to accurately draw a collection of smaller regions associated with traversing a

hierarchy.

3.2 Parallelizing the Algorithm

Three primary components of this algorithm can, by and large, be easily parallelized. The first is the

transformation of the vertices from world space to pixel space, and is trivially parallelizable, as each vertex

can be transformed independently.

The second parallelizable component is the task of grouping polygons by scanline into y-buckets. Its

parallelization is more involved, but highly scalable. It proceeds in two passes.



In thefirst pass,eachprocessorisgivenanequalnumberofpolygonsto process.Onetemporaryarray
stores,for eachpolygon,the lowestscanliuewhereit appears,oraninvalidationflagif it doesn'tcrossany
pixelcenterswithintherestrictbox(asdescribedinSection3.1.2).A second,two-dimensional,arraystores,
for eachscanlineandprocessor,howmanypolygonstheprocessorfoundthatbelongin thaty-bucket.

Afterthefirstpass,thenumberpolygonsbelongingineachy-bucketisfoundbyaccessingthelatterarray,
andspaceforeachy-bucketisallocatedbypartitioningacommonoutputarray.Thespaceforoney-bucket
is furtherpartitionedintospaceforeachprocessorto fill withinthaty-bucket.(Whilethis transitionalstep
canalsobeparallelizedbystandardtechniques,its workperprocessoris onlyproportionalto thenumber
ofscanlines,not thenumberofpolygons.)

Duringthe secondpass,eachprocesscreatesappropriatey-bucketstructuresfor all polygonsthat it
processedin thefirst pass,exceptthosethatwereinvalidated.

Thethirdparallelizablecomponentinvolvesprocessingeachscanlineinorderfrombottomto top,which
involvesthebulkof thecomputation.Thereareseveralwaysof implementingthispart in parallel.Our
implementationcontainsa "criticalsection"ofcode,inwhichaprocessorupdatesthecurrentactivelist for
thescanline,takesacopyofit, andthenexitsthecriticalsection.Thenit buildsthex-bucketsandprocesses
thescanline,asdescribedin Section3.1.3.Thenextavailableprocessorwaitsto enterthecriticalsection
andgetsthenextavailablescanline.

Thisimplementationisnot100%scalablesinceit containsacriticalsectionthat canactasabottleneck
asmoreprocessorsareadded.However,it wasfairlyeasyto implementandcausedlowcontentionwith
thefourprocessorswehadavailable.Ourmeasurementssuggestthat it canextendto about16processors
beforecontentionbecomesaseriousdrawback.

Useltondescribedscanlineprocessingas "embarrassingly parallel" for ray-casting [26]. However, the

expensive part of ray-casting in irregular structures with semi-transparent material is the calculation of exit

faces from each cell entered by the ray. (Moreover, this technique does not directly apply to intersecting

grids, where a ray can be in two cells simultaneously.) The technique presented here uses coherence to

greatly reduce the cost that corresponds to exit-face calculations, at the expense of introducing a short serial

critical section.

3.3 Use with a Multi-Resolution Hierarchy

A method of spatial partitioning in k dimensions, called k-d trees, was introduced by Jon Bentley [1]. A

binary tree is built that splits in one dimension at a time. Our current implementation splits in a round-robin

fashion, but one could easily adopt a more sophisticated policy based on the locations of objects. At tree

node v, the (hyper-)plane that splits the region is orthogonal to the xi-axis when splitting on dimension i.

Our implementation bisects the region, but in general, any partitioning value Xv can be chosen. Thus the

hyper-plane is defined by xi = X,. Because of this orthogonality, k-d trees are distinct from binary space

partitioning (BSP) trees. We have added a new adaptation to k-d trees, as described below.

3.3.1 Creation of the Hierarchy

Each node v in the tree has associated with it a list of polygon Ids. It is built as follows: for each polygon

p passed into the tree node, which is splitting on dimension i, if all vertices have an xi location less than
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Figure 1: Distributing polygons in a k-d tree, as described in Section 3.3.

X_, place p in the set to be passed to the left subtree. If all vertices have an xl location that is greater than

the bisection value, place p in the set to be passed to the right subtree. Otherwise, retain p in the set to

be stored at v (see Figure 1). Then, process the left and right subtrees. If the number of polygons passed

into node v is below a user-defined threshold, no splitting occurs, and the node is a leaf. Note this results

in polygons being associated with the smallest node region that completely contains them, following Greene

[11], and avoids subdividing polygons.

We developed a new, flexible storage method that allows us to avoid the extra space of linked lists and still

pass all objects associated with a subtree in one operation. Polygon Ids are stored in one common array Tid,

and arranged in the order that they would appear during a prefix-order traversal of the k-d tree. (A post-fix

order can also be easily made to work.) Thus, all polygons stored in a subtree form a contiguous section in

Tid, and all polygons associated with that subtree's root node are at the beginning of that segment.

Assuming the array begins with a known subscript of 0, it is necessary to store globally the total number

of polygons in the tree, and to store in each node the offset to the beginning of its set of polygons. The

remaining values can be recovered during traversal, provided the end-point for each subtree is passed in as

a parameter of the traversal. For the whole tree, this is just the total number of polygons. Thus if a tree

node v is visited with end-point E passed in:

• The end-point for polygons associated with node v is the offset (begin-point) of v's left child;

• The end-point for the left child is the offset of v's right child;

• The end-point for the right child is E.

In this convention, an end-point is the first index above the segment.

3.3.2 Fully Detailed Rendering

To prepare for rendering, the tree is traversed and a set of subranges of polygon Ids is developed, which

represent all polygons within the user-defined restrict box. Recall that all polygon lds within the spatial
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regionrepresentedbyonenodearestoredcontiguouslyin thepolygonarray,Tid (Section 3.3.1). If the

entire node is outside the restrict box, the traversal returns from that branch immediately.

If the node is entirely inside the restrict box, then the subrange for that node is added to the set of

subranges to be rendered, and again the traversal returns without exploring the subtrees. The same applies

for leaf nodes, and for nodes whose region contains fewer polygons than a user-specified cut-off.

If a node is partially inside the restrict box and none of the above exceptions applies, then the subrange of

Tid associated with the node itself (but not its descendants) is added to the set of subranges to be rendered,

and traversal continues into the children of this node, which are treated recursively ill the same manner.

When this traversal is completed, we have a list (represented as a set of start and end positions within

the polygon array Tid) of all possibly relevant polygons, which are then sent to the renderer for processing

(see Section 3.1).

3.4 Multi-Resolution Rendering

For multi-resolution rendering, we wish to display error-controlled approximations of the data for speed.

For this, each node must contain a model representing an approximation of the data in the subregion it

represents, as well as an error term representing the deviation of the model from the data. Our multi-

resolution technique departs from that associated with wavelets [20] in that each level represents a complete

model of its region, whereas wavelets represent just the detail information not represented at higher levels.

For rendering, the user specifies an acceptable error. During the traversal, if the error associated with

the node is less than the acceptable error, traversal stops there and the nodal region is drawn, rather than

the individual polygons. To draw a nodal region, it is simply treated as the six bounding polygons defining

it. The values at the eight corners of the region come from the data model.

At present, our nodal model is a rather trival one, but it constructs very fast "preview" images to

help orient the user in a very large data set (see Figure 10). Eight data values are stored with each node

representing the values of the eight node cell corners. These values are found, for each corner, by taking the

average of any data values within the node that are nearest that corner. The error metric is the mean squared

error between the average value over the entire node region and the actual vertex values in the region. We

will next implement a trilinear model, as we used in [34]. We believe that finding a better data model for

approximating and rendering is an important and interesting problem that we will pursue ill future.

There are some differences in the rendering process caused by the fact that some regions may be drawn

exactly, using grid polygons, while others are drawn approximately, using the nodal model. Rather than

storing all possibly visible polygons, regions corresponding to each tree node at which traversal stops are

composited individually into the software frame buffer.

Traversal occurs in front-to-back visibility order. When rendering a subregion, the algorithm described

in Section 3.1 is used, with the local restrict box being the intersection of the boundary of the subregion

and the global restrict box. As in fully detailed rendering, during traversal, the boundaries of the subregion

represented by the node are tested and if the whole region lies outside the the restrict box, that subtree is

not processed further.

When independently rendering a collection of small regions associated with a tree traversal, where some
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Figure 2: Figure of perspective view - eye is at (0,0,0) world space. Volume is projected onto screen at left.

regions may be rendered in full detail, special care must be taken to insure that drawing between the last

polygon of the front region and the first of the next is done accurately. In addition, the last region that is

rendered for a given pixel must be drawn all the way to the region border, provided that the region border

lies inside the volume. Three screen buffers are maintained to achieve this accuracy. A data buffer keeps

the data value of the last polygon that was drawn inside the region, and is used when drawing starts for the

next region. A depth buffer is kept to represent the screen depth from the last polygon to the border of the

region, and is used to calculate the distance to the first polygon inside the next region. Since the renderer

does not know which region is the last to be drawn for a given pixel, a second data buffer is maintained that

represents the data value at the region back border and is obtained either by using the value of the first

polygon behind the region border, if one exists, or it is given the value of the other data buffer. After all the

regions have been drawn, all three buffers are used to finish drawing any pixels that are not opaque yet. The

pixels are drawn from the front data value to the back data value using the depth from the depth buffer.

3.5 Numerically Stable Perspective Transformation

A standard perspective transformation matrix transforms viewable world space into a unit viewing volume,

so that the Z values of the vertices are transformed to values close to each other, introducing substantial

floating point relative errors and some ordering inconsistencies. We corrected this problem using a different

transformation, described here. This transformation preserves accuracy of the Z values near the volume

center, by transforming the center to zero in screen Z. Symbols used in this section are summarized in

Figure 3. The main innovation is the introduction of a translation in screen-Z, given by Eq. 2, which

produces a nmnerically stable equation (Eq. 3) for screen-Z in terms of world-Z, near the world-Z center.

The volume being viewed is inside a user-definable visibility bounding box (Vbb), of diagonal d (see

Figure 2). The Vbb is first centered at (0,0,0) in world space, then it is rotated by the user rotations and

translated back by eo. Then the user translates (exaggerated in the diagram) are applied in screen space,



IISymbol Definition Units
h, screen height pixels

e_ distance from eye to screen pixels

eo distance from eye to volume origin world units

d diagonal of volume's visible bounding box world units

s user's scale factor pure number

zt translate in screen z world units

Yt translate in screen y world units

xt translate in screen x world units

zv world vertex location z world units

yv world vertex location y world units

x_ world vertex location x world units

z_ z transformed to screen pixels

y, y transformed to screen pixels

x_ x transformed to screen pixels

z,o offset (defined in Eq. 2) pixels

Figure 3: Symbols used in perspective calculation.

with the restriction that

zt + ½d + NearClip <_ eo

so that the denominator (eo - zt - z,) is positive. (Our implementation uses NearClip = .05Co.),

Using similar triangles, we get the following relationships

Conversion to screen space is

e 8 --

Xs

es

Ys

Cs

Zs q- Zso

C3

8 ' h s • e o

d '
X v _- X t

C o -- Z t -- Z v

Yv + Yt

eo -- Zt -- Zv

Zv -4- Zt
-1

e o -- Z t -- Z v

X 8 --

e o -- Z t -- Z v

es(y_ + Yt)
Us --

e o -- Z t -- Z v

_,(Zv + z,)
Z 8 --

e o -- Z t -- Z v

Co

e o -- Z t -- Z v

z,o (1)

where the quantity Z,o is an offset to the screen position that is chosen so that the center of the volume is

mapped to 0 in z_.

(The center of the volume might map anywhere in screen X and Y, as it is not necessarily within the
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Vbb.)Therequiredvalueis

g$o

which gives the numerically stable expression

e s • Z t

eo -- Zt
(2)

e s • Z v • e o

(Co- z )(to - z, - (3)

To invert the z.-to-z_ mapping, just solve for zv. The following equation gives the difference in world-

Z between two points along one sight line (z,_ - z.1), in terms of their screen-space values, again in a

numerically stable form:

to. -z,,)

Zv2 -- Zvl _ 6o "ts -_ Zs2 -- "_- Z$l

\to -- Zt to -- Zt

Finally, the world distance between two points on a sight line is inversely proportional to the cosine of the

angle 0 between the sight line and the screen-Z axis:

g

z.2 - z,l / z_
dist

cos(O) - (z 2 - + + (5)

Accurate values of this distance are critical because they affect the compositing of color through possibly

thousands of triangles that are very close to each other, as seen in the space-shuttle grid (see Figure 9).

4 Experimental Results

[n our experiments, we studied the performance of the new renderer. We first compare the performance of the

method on a curvilinear multi-grid using single and multiple processors. Next, we compare the performance

of the algorithm against other renderers we have implemented. Finally, we explore the ramifications of the

hierarchy.

For our results, we used the following data volumes: the blunt fin [13] (a single curvilinear volume of

40,960 data points); the space shuttle [2] (a nine-grid curvilinear volume consisting of 941,159 data points);

the lftrx (fighter jet, courtesy of John Batina of NASA Langley Research Center (an unstructured tetrahedral

grid with accompanying polygon surface file consisting of 13,832 data points and 70,125 tetrahedra); and,

for comparison to rectilinear grid renderers, the hipip molecular data set courtesy of L. Noodleman and D.

Case, Scripps Clinic (a 64x64x64 resolution rectilinear volume, or 262,144 data points); and the rectilinear

CTHead data set from UNC (at a resolution of 200x200x50 or 2,000,000 sample points).

4.1 Performance on a Single Processor and in Parallel

For this evaluation, we used the nine-grid space shuttle data set. (Figure 9 shows four volume renderings of

this data set, with the shuttle itself treated as a polygonal surface.) Results are presented in graphical form

with an emphasis on showing the gains in speed for one to four processors. The dataset was rendered with

a spatial rotation of (-90°X, -10°Y, 0°Z), and scale factors that ranged from 1.0 to 5.16. A scale factor of
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Scale - 1.00 1.20 1.44 1.73 2.07 2.49 2.99 3.58 4.30 5.16

Active

Polygons 0.865 0.995 1.153 1.346 1.495 1.660 1.836 2.022 2.192 2.360

(Million)

Single

processor 54.39 66.87 83.52 98.88 112.55 125.34 138.02 149.15 161.75 173.80

Two

processors 30.66 37.46 46.34 56.10 63.30 71.32 77.67 84.33 90.17 97.57

Three

processors 21.30 26.19 32.58 38.82 44.10 49.36 54.24 58.26 62.70 68.15

Four

processors 16.85 20.16 25.06 30.10 34.14 37.89 41.62 44.89 49.15 53.03

Table 1: Elapsed time comparisons (in seconds) on an SGI Onyx using four 150-MHz processors, with 256MB

memory. (NASA space shuttle data set)
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Figure 4: Speedup of algorithm for shuttle (scale = 3.58).

1.0 is the default situation where the long diagonal of the bounding box of the volume is equal to the width

and height of the screen window. The default window resolution is 500x500 pixels.

The speedup data for four processors in particular is not exact since the machine, an SGI Onyx, had

four 150-MHz processors, which means that some time was spent by one or more processors on unrelated

processes. This introduced some variation in performance, but trends in speed can still be observed for four

processors.

4.1.1 Timing analysis

We looked separately at the cost and parallelizability of different sections of the algorithm, including

transformation of the points to screen space, creation of the Y-buckets, and generating scanlines. Speed-up

factors for these sections using parallel processors is shown in Figure 4.

The average total CPU time to transform the shuttle points from world space to screen space was 1.25

ll



MBytes

90.0

85.0

80,0

75.0

70,0

65.0

60,0

Memory Required

1.00 1.20 1.44 1,73 2,07 2.49 2.99 3.58 4.30 5.16

Scale Factor

m l Processor

m2 Processors

[33 Processors

r14 Processors

Figure 5: Amount of memory used by the program.

seconds. Figure 4 shows the speedups for transforming the points to screen space for multiple processors.

shows that this part of the algorithm is scalable with a greater than 3.5 speedup for four processors.

CPU times for creating Y-buckets varied from 16.8 seconds to 18.9 seconds. The time needed to create

Y-buckets increases slightly (less than 10% change from scale = 1.0 to scale = 5.16). This increase in time

is clue to tile fact that the Y-bucket array grows in size and active triangle id's must be stored in the array.

An active triangle is one that is not clipped from the drawing area due to size or position on tile screen.

The speedup factors for generating scanlines from Y-buckets are not as high as those for transforming

points to screen space or building Y-buckets because of the critical code mentioned in Section 3.2. However,

the increase in speed is still significant for four processors.

The total elapsed times to render each picture are presented in Table 1, with overall speedup factors

are in Figure 4. It is clear that although 100% scalability is not achieved, there is a significant speedup

(approximately 3.25) for four processors.

4.1.2 Memory

Memory use is an important factor in measuring the efficiency of an algorithm. Figure 5 shows the memory

(ill Megabytes) used by the program for a range of scale factors and multiple processors. This information

was recorded by keeping statistical information associated with all calls to malloc 0 and free(). Most of the

memory was used for storage of the following major items:

• Space shuttle grid - 33.9 Mbytes.

• Transformed points - 11.3 Mbytes.

• Frame buffer (R,G,B,Alpha,Composite) - 5.0 Mbytes

• Y-bucket array - 11.0 Mbytes
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Figure 6: Number of active polygons for different scale factors.

The rest of the memory is used by the program to keep track of the triangles that it is rendering. It

can be seen from Figure 5 that memory usage increases with the number of processors. This is due to the

fact that each processor is rendering a scanline and needs the memory to hold the data structures for that

scanline, such as the active polygon list and the X-buckets. Also, as the number of active polygons increase,

the memory needed by active lists and buckets increases as well.

4.1.3 Other factors

It is clear from Figures 6 and 7 that as the window size is increased or as the scale is increased, the number

of active polygons is increased as well. As the scale is increased, there is an upper limit to the number of

active polygons which is less than the total number of polygons in the data set because at high scale factors,

more of the volmne is projected off of the screen and the polygons that project off of the screen are discarded

by the algorithm during Y-bucket creation. Increasing the window size will allow very small polygons, that

may have been discarded because they did not cross a pixel, to become active since they are now projected

onto a larger portion of the screen.

4.2 Comparison to Other Renderers

We have done some speed comparisons of this new renderer against other direct volume renderers we have

written. None of these other renderers have the generality to handle irregular multi-grids like the space-

shuttle (which most renderers will not handle), and we have no other renderer that handles tetrahedral

volumes. However, we can compare image quality and performance against the following:

1. Ray Casting for rectilinear grids [27].

2. Coherent Projection (hardware Gouraud shading) for rectilinear grids [33].

3. Incoherent Pro)ection (hardware Gouraud shading) for single curvilinear grids [28].
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Figure 7: Number of active polygons for different screen sizes.

Note that because of its extreme generality, our new software scan conversion algorithm cannot compete

with methods designed to take advantage of the simplicity of regular grids.

Table 2 compares the time taken to render each of the data sets described above by the renderers capable

of handling them. Each volume is drawn in a 500x500 pixel window at a scale of 1 or 5 times.

We do not have space to show complete comparisons of image quality on all these methods. Figure 8

does compare the four methods on the hipip data set, which is rectilinear and thus amenable to all methods.

It should be mentioned that the differences between the methods are brought out in this image by using a

transfer function that abruptly changes from color to transparent. If a more smoothly varying function is

used, the differences between methods can be very minor. We can provide some further general comments.

First, software scan conversion generally produces pictures equivalent in image quality to ray casting much

faster, because of the use of coherence. However, our particular projection methods are not optimized

for opaque data sets, while a ray caster processing front to back can easily halt when the pixel becomes

opaque. Thus on a data set such as the head, the ray tracer can be competitive or even faster than other

methods. There are methods of including early termination due to opacity in projection methods; we haven't

implemented them yet.

In general, software scan conversion produces a noticeably clearer image with less artifacts than the

hardware Gouraud shading methods. While it is noticeably slower, this cost may often we worth it for the

improvement in image quality.

Figure 9 shows four images of the space shuttle at different scales.

4.3 Performance with the Hierarchy

There are two aspects of the hierarchy. First, there is the temporal savings of discarding whole invisible

subregions at one time, rather than examining their primitives individually. We found this a significant

savings only when zoomed in on the volume considerably, though with large volumes, the gains may be more
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RenderingMethod- SoftwareScan
Conversion

Incoherent
Projection

Coherent
Projection

RayCasting

SpaceShuttlescale1 60.9
SpaceShuttlescale5 202.1
BluntFinscale1 19.4 16.4
BluntFinscale5 51.4 16.5
FighterJetscale1 24.6
FighterJetscale5 92.6
Hipipscale1 74.5 109.4 12.2 63.0
Hipip scale 5 128.9 109.4 1.8 187.0

CTHead scale 1 180.1 56.7 48.0

CTHead scale 5 203.9 9.46 140.0

Table 2: Speed Comparison of Various Renderers (C.P.U. seconds) on an SGI Onyx with Reality Engine

II graphics, using one 150-MHz processor. Only renderers relevant to a particular data type are shown.

Projection methods utilize the Reality Engine graphics, while ray-casting and scan conversion do not.

Scale Factor 1 4 16 64 256

Speedup With Hierarchy 0.95 0.98 1.15 1.37 1.96

Table 3: Speedup gained on space shuttle using a hierarchy to avoid invisible regions, on an SGI Onyx using

one 150-MHz processor.

significant. This can be seen in Table 3, which shows the speedup gained by using the hierarchy at different

levels of zoom.

The second aspect is the use of a multi-resolution model at some nodes to approximate the information.

As we explained above, our explorations in this area for irregular grids is just begun. Figure 10 shows a

comparison of the fighter jet shown rendering each primitives and using an error approximation. The left

column shows the volume and embedded surface, the center column the volume only, and the right column

the approximation of the volume. The top row shows the whole data set, the bottom is zoomed in by a

factor of two on an interested area. The unapproximated images took between 38 and 44 seconds to render,

while the two approximated images took less than 1 second.

5 Conclusions

The renderer described in this paper allows rendering of large multiple intersection irregular and regular grids

including polygonal meshes without the use of expensive graphics hardware. Factors such as screen size and

scale can affect the time needed to render the volume. The renderer is parallelizable and measurements show

that this can greatly reduce elapsed time without greatly increasing memory requirements. Use of a k-d tree

makes the algorithm better able to handle very large dta sets. Accurate depth calculation can be achieved

by using the project method described in Section 3.5.
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Figure 8: Comparison of four rendering methods on the rectilinear hipip volume.
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Figure9: Fourimagesofthespaceshuttleat differentscales.Imagestookfrom27to 64secondsonanSGI
Onyxwith four150-MHzprocessors.
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Figure10:Softwarescanconversionof the fighter jet (a tetrahedral data set). The upper row shows the whole
volume, and the lower row shows a close-up of an interesting region. The left column shows the volume and
embedded surface; the center column shows the volume only. The right column is an approximated version
(Section 3.4). While the left and center images took 38 seconds to render, the right images took less than
one second, on an SGI Indigo-2 with a 200-MHz processor.
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